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Abstract—We integrate literature- and data-driven task anal-
ysis methods to derive an initial task taxonomy for electronic
health record (EHR) and electronic medical record (EMR) data
analysis. An EHR (EMR) is a digital and longitudinal version
of a patients health(medical) information and may include all
key clinical events relevant to that persons health (medical)
history, such as provider, demographics, progress notes, medicine,
diagnosis, etc. Our goal is to arrive a task taxonomy for analyzing
EHR (EMR) datasets because tasks play an important role
in the design and evaluation of visualization techniques. Our
method has three stages: data collection, task modelling, and task
taxonomy summary. In data collection, we first survey related
literature from the past two decades and extract typical tasks
and corresponding data by extracting goals and scenarios of the
particular work. We introduce multiple continuous relations to
describe specific binary or multiple continuous relation-seeking
tasks. Finally, we arrive an initial set of task types for EHR/EMR
analysis that guide the design and evaluation of visualization
techniques.

Keywords—Task taxonomy, visualization task analysis, elec-
tronic health record, literature-driven method, data-driven
method.

I. INTRODUCTION

With the development of data collection and storage tech-

niques, the scale and complexity of electronic health records

(EHR) and electronic medical records (EMR) are increasing

rapidly and the relationships among entities in big EHR/EMR

data are becoming challenging to understand. To help re-

searchers and users easily discover the underlying patterns

and outliers of complex data, visualization techniques and

systems have become indispensible tools, as evidenced by

recent publications [1] [2] [3].

Task taxonomy plays an important role in the design and

evaluation of visualization systems [4]. A task is a collection

of activities to accomplish a specific goal, and a task tax-

onomy aims to help data analysts understand users demands

accurately and clarify their research target. For practitioners,

task taxonomy helps characterize users tasks and data types

in specific application domains, ensuring that the visualization

system best supports users needs [5] [6]. For visualization

evaluations, task taxonomy helps benchmark performance for

comparative analysis and design recommendations in specific

application domains [7].

A number of general task taxonomy frameworks have been

applied successfully in several fields, such as hierarchical task

analysis (HTA) framework [8] and the Andrienko-Andrienko

data-driven framework [9]. In using them to EHR/EMR anal-

ysis, it is still necessary to consider domain-specificity when

choosing tasks to support visualization design and evaluation.

Here we combine literature-based and data-driven methods for

EHR/EMR task analysis. The main contributions of our work

are as follows:

• Select, collect, and analyze EHR/EMR papers over the

past two decades. Typical tasks and related data are

analyzed by the motivations and goals of the particular

work.

• Extend the data-driven task analysis method to multivari-

ate continuous relationship findings to describe longitu-

dinal trajectory tasks.

• Construct an initial EHR/EMR task taxonomy, using

literature- and data-driven methods, that can be used for

subsequent design and evaluation.

II. RELATED WORK

Traditional task analysis involves asking the users. Recent

novel task taxonomies also include data-driven solutions and

meta-level task-analysis methods.

A. Task-Analysis Methods

User-driven methods use questionnaires, surveys, and field

studies to derive needs from stakeholders [10]. To form a task

typology, Schulz et al. characterize tasks in a design space

of five dimensions: goal, means, characteristics, target, and

cardinality [11]. Brehmer and Munzer extend Roths taxon-

omy [12] to distinguish the goals, objectives, operators, and

operands to form a typology of why, what, and how [5] that
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has been widely adopted in tool designs, user studies, and

nascent technologies [13].

Most similar to ours are the data-driven methods. Andrienko

and Andrienko [9] formalize a data-driven approach to de-

rive tasks in geospatial and temporal data explorations. This

framework has two parts: a data model and a task framework.

The data model divides data components into two categories,

referential and characteristic. Referential components define

the context in which the data are obtained, including the

moment when the measurements are made, the location where

the measurements are made, and the entities that are mea-

sured (e.g. time, space, population). Characteristic compo-

nents are results of measurements, observations, calculations,

etc. obtained in that context. In addition, a data function is

proposed to define the correspondence between referential

and characteristic components. Hence, the dataset structure in

the data model is represented as a combination of three key

components: the set of all references, the set of all possible

characteristics, and the data function.

The task framework distinguishes tasks according to the

level of data analysis, dividing them into elementary and

synoptic tasks. Elementary tasks involve individual elements

of the reference set; synoptic tasks involve the entire reference

set or its subsets. Furthermore, tasks are further divided into

three subcategories according to their constraints and targets:

lookup, comparison, and relation seeking tasks.

This framework, though originally designed for geospatial

data analysis, has found many uses in other domains. In partic-

ular, Kerracher et al. [4] extended this data-driven solution to

graph data task analysis. Kerracher et al. pointed out that the

original categories of references (time, space and population)

are difficult to apply to graph data, and the categories of

relations between references (continuity, order and distance)

are difficult to use for edges between nodes in graph data.

Thus, they extended the references with “graph” and extended

the relations between references with “link”.

B. EHR Data Visualization

Many tools are designed for solving specific application

problems related to single items in datasets. For example,

Plaisant et al. [14] designed lifeLines to explore cohort-graphs

from single patient records in timelines. Wang et al. [15]

design lifeLines2 to support query and other operations such as

align, rank, and filtering to visualize estimates of the intervals

in order to find temporal patterns across health records.

Others have examined aggregated data visualizations. For

example, Wongsuphasawat et al. [16]’s LifeFlow provides an

interactive visualization of cohort event sequences. Wong-

suphasawat and Gotz [1] design Outflow to explore flow as

well as factors and outcomes of temporal event sequences

to help clinicians understand how certain disease-progression

paths may lead to better or worse outcomes. Outflow visu-

alizes aggregated event progression pathways together with

associated statistical analysis. Perer and Sun [18] proposed

MatrixFlow to track symptom evolution during disease pro-

gression through temporal event analysis. Gotz and Stavropou-

los [19] designed a milestone-demotion algorithm in Decision-

Flow for showing patients medical history ordered by time

and types. Perer et al. [3]s Care Pathway Explorer supports

interactive exploration for researchers to examine the level

of detail relevant to user tasks. Debek et al. [20] designed a

visualization tool for symptom transformations in EHR data.

In addition, PatternFinder [21], COQUITO [22], TimeSpan

[23] and Eventpad [24] support interactive query interfaces

to specify the temporal queries and often aggregate temporal

event patterns. Gotz and Stavropoulos [17] design a mileston

demotion algorithm in DecisionFlow for showing patients’

medical history ordered by time and types. Perer et al. [3]’s

Care Pathway Explorer supports interactive exploration for

researchers to examine the level-of-detail relevant to user tasks.

Debek et al. [18] designed a visualization tool for symptom

transformations in EHR data. Besides, PatternFinder [19],

COQUITO [20], TimeSpan [21] and Eventpad [22] support

interactive query interfaces to specify the temporal queries and

often aggregate temporal event patterns.

III. OUR METHOD

A. Literature Data Collection

Our first stage in deriving the tasks is to examine those stud-

ied in the literature. We extract typical tasks with researchers

interest by surveying the literature related to medical data

visualization literature and then analyze them by data types.

We collect related literature in two ways. One is to follow

the work of visualization experts known for their EHR/EMR-

related research, such as Ben Shneiderman, Catherine Plaisant,

Adam Perer, David Gotz, Fei Wang, all of whom have made

great contributions to EHR/EMR data visualizations over the

past two decades. We collected 18 papers. The second way

is to retrieve related literature over the past five years with

keywords “electronic health data (record)” and “EHR data

visualization.” We used the top 24 most-cited papers.

B. Task Extraction from Literature

Our first step is to manually curate tasks from our literature

collection by tabling who (user), what (function), when (con-

dition), why (goal), and how (method). Sentences related to

tasks are extracted and recorded. We especially focus on the

motivation and goals (why). Table I shows the analysis results

of part of the literature collection.

We take the Perer et al. paper “Mining and exploring

care pathways from electronic medical records with visual

analytics” [3] as an example to explain the task extraction

steps. The main goal of this work came from the abstract:

“The goal is to utilize historical EMR data to extract
common sequences of medical events such as diagnoses and
treatments, and investigate how these seuences correlate with
patient outcome.”

Perer et al. further described the scenarios related to diabetes

patients. We read the scenarios and subsequently summarize

the task as follows:
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TABLE I
4W+H ANALYSIS FOR MEDICAL DATA VISUALIZATION LITERATURE

Who (user) When (condition) Why (goal) What (functionality) How (method)

Physicians [3]
Temporal event se-
quence data

Utilize historical EMR data to
extract common sequences of
medical events such as diag-
noses and treatments, and in-
vestigate how these sequences
correlate with patient outcome

1. Give an overview of the frequent
patterns;
2. Examine the frequent patterns and
select specific patterns of interest;
3. Compute the patient subsets that
match physicians specified subtraces;
4. The Frequent Pattern Analytics
mines frequent patterns and displays
them in the visualization.

1. Frequent-sequence-mining
algorithm;
2. Bubble chart for overview
visualization and flow visual-
ization

Clinicians [1]
Temporal event se-
quence data

Provide important insights into
how diseases evolve over time
and help clinicians understand
how certain progression paths
may lead to better or worse
outcomes.

1. Aggregate multiple event sequences;
2. Display aggregate pathways;
3. Summarize the pathways corre-
sponding outcomes;
4. Let users explore external factors.

Flow visualization

Analysts and
epidemiolo-
gists [17]

High-dimensional
temporal event
sequence data

Help analysts and epidemiol-
ogists study data from patient
cohorts to understand what fac-
tors may influence particular
outcomes.

1. Issue a query to retrieve subse-
quences of interest;
2. Construct a DecisionFlow Graph ag-
gregated to the matching data;
3. DecisionFlow Graph is analyzed to
extract statistics and visualized;
4. Interaction allows exploratory anal-
ysis

1. Milestone demotion algo-
rithm;
2. Horizontal layout algorithm
of milestone nodes

Investigators
[23]

Temporal event se-
quence data

Help to understand the patterns
of events observed within a
population that most correlate
with differences in outcome.

1. A visual query module to specify
episode definitions interactively;
2. A pattern-mining module to help
discover important intermediate events
within an episode;
3. An interactive visualization module
that helps uncover event patterns most
impacting outcome and how those as-
sociations change over time.

1. Visual query capabilities;
2. Pattern mining techniques;
3. Interactive visualization
techniques

Physicians [14]
Personal medical
history records

Design appropriate visualiza-
tion and navigation techniques
for presenting and explor-
ing personal medical history
records.

1. Present a personal history overview
on a single screen;
2. Provide direct access to all detailed
information from the overview with
one or two clicks of the mouse;
3. Make critical information or alerts
visible at the overview level.

Medical record is summarized
as a set of lines and events on
a zoom-able timeline.

Physicians [15]
Multiple records of
categorical tempo-
ral data

Find hidden patterns contained
in EHR/EMR and other tempo-
ral datasets.

1. Select subsets of the records from
multiple patients.
2. Use control panel to align, rank, and
filter the display.

Timelines with the same abso-
lute time scale

Physicians [19]
Multivariate and
categorical data

Search and discovery of tem-
poral patterns within multivari-
ate and categorical datasets.

1. Visual temporal query languages
2. Query result visualization

1. Define a temporal pattern as
a sequence of events separated
by time spans so that it can
be queried by events and time
spans components.
2. Multiple timelines for query
results.

What are the common medical conditions after one year for
hyperlipidemia patients with hypertension and diabetes pre-
conditions?

Further decomposing this task, we obtain the subtasks as

follows:

• Who in the patient cohort were diagnosed with both
hypertension and diabetes? and are these conditions pre-
conditions to hyperlipidemia?

• When are patients diagnosed with hyperlipidemia?
• What are the common medical conditions after a year in

the cohort?
By knowing these tasks, a visualization designer can create

exploratory interfaces to investigate what techniques best

correlate patients with outcomes. Then users can further an-

swer questions such as Which (sub)cohorts lead to negative
outcomes? Using this approach, we derived from these papers

107 typical tasks in EHR and EMR data visualization tasks.

C. Data Type Characterization

We characterize data types needed to accomplish the tasks

derived above and then fit the data into the Andrienko-

Andrienko data-driven framework by characterizing them into

referential and characteristics data types, as shown in Table II.
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TABLE II
DATA COMPONENTS IN MEDICAL DATA VISUALIZATION RESEARCH

Data type Data Detail

Reference

Time
Admission time
Discharge time
Medical event time

Patient

Date of birth
Date of death
Sex
Race
State

Characteristics
Medical event

Diagnosis
Lab test
Medication order
Treatment
Transfer among hospital departments

Outcome Positive outcome / Negative outcome

IV. TASK MODELLING

The original data-driven framework defines five relation

types: (1) R1 is the relations between references and char-

acteristics; (2) R2.1 is the relations between individual refer-

ences and contains continuity, order and distance; (3) R2.2 is

the relations between references sets (i.e., continuity, order,

distance and set relations;) (4) R3.1 is the relations between

individual characteristics (i.e., equality, order, distance and set

relations); (5) R3.2 is the relation between characteristics sets

(i.e., similarity, difference, opposition, correlation, dependency

and structural connection). These five types of relations are

shown by the blue lines in Fig. 1.

When analyzing the relations between data, we found that it

was difficult to describe some EHR/EMR tasks. For instance,

in the task “Find the patients who have been diagnosed
with D1 followed by new diagnosis D2 and finally D3.”, the

relation among diagnoses does not conform to any relations

between characteristics such as equality, order, distance and set

relations. Although the task case we described seems similar

to the order relation, they are not the same because events can

co-occur. For example, if a patient is diagnosed with cold at

first, then fever, and finally cold again, the cold occurred or co-

occurred before and after fever. Thus the relation between cold
and fever cannot be simply described as an ordered relation.

Kerracher et al. previously extended the categories of ref-
erences with “graph” and categories of relations between

references with “link.” We have classified the medical/health

events into characteristics rather than references. The “graph”

and “link” concepts can still be used to describe the medical

events and relations between medical events. In the Andrienko-

Andrienko framework, the relations between characteristics

data components are of two sorts: (1) relations between

individual data components (R3.1); (2) relations between data

groups or relations between individual data components and

data groups (R3.2). For a given example task, Event D3 is

neither directly related to event D1 or event D2, nor simply

related to the group D1 and D2; it is related to the relation

between D1 and D2. Thus, in order to describe the relation

among D1, D2 and D3 in the task “Find the patients who

Fig. 1. Our extended relation descriptions between and among data compo-
nents.

have been diagnosed with D1, and then diagnosed with D2,
and then diagnosed with D3,” we derive a new type of relation

R3.3 among characteristics, shown by the red line in Fig. 1.

R3.3 refers to the relations among multiple continuous separate

characteristics. And we call this kind of relations as multiple
continuous relation.

The Andrienko-Andrienko data-driven task-model approach

subdivides tasks into a hierarchy according to their constraints

and targets: elementary tasks and synoptic tasks at the first

level and then lookup, comparison, and relation-seeking tasks,

which are children of the synoptic tasks, in the second level.

(1) Lookup tasks give a reference or characteristic as

constraints, and ask for another kind of data component. Tasks

with references as constraints and characteristics as targets are

direct lookup tasks; tasks with characteristics as constraints

and references as targets are inverse lookup tasks.

(2) Comparison tasks ask for the relations between refer-

ences or characteristics, and usually include lookup tasks as

their subtasks. Tasks with references as constraints and rela-

tions between characteristics as targets are direct comparison

tasks; tasks with characteristics as constraints and relations

between references as targets are inverse comparison tasks.

(3) Relation seeking tasks give the relations as constraints

and ask for references or characteristics.

After introducing the concept of multiple continuous re-

lation, we extend the task model by dividing the relation

seeking tasks into two subcategories: binary relation-seeking

and multiple continuous relation-seeking tasks. The extended

task space is shown in Table III.

V. TASK TAXONOMY

Table II summarizes tasks related to the data (Table III)

and tasks (Table IV). The introduction of multiple continuous
relation and the division into binary and multiple continuous

relation-seeking tasks, helped us classify tasks. For instance,

the task “Find patients with medical event E4 occurring
before/after the medical event sequence E1 → E2 → E3”,

which cannot be generated by the original data- driven frame-

work, can be described using multiple continuous relation-

seeking tasks.
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TABLE III
OUR PROTOTICAL TASK AND DATA MODELS FOR EHR/EMR TASK ANALYSIS

Task types Constraints Targets

Elementary tasks

Lookup
Direct lookup References Characteristics
Inverse lookup Characteristics References

Comparison
Direct comparison References Relations
Inverse comparison Characteristics Relations

Relation-seeking
Binary relation-seeking Binary relations References / Characteristics
Multiple continuous relation-seeking Multiple continuous relations References / Characteristics

Synoptic tasks

Lookup
Direct lookup References Characteristics
Inverse lookup Characteristics References

Comparison
Direct comparison References Relations
Inverse comparison Characteristics Relations

Relation-seeking
Binary relation-seeking Binary relations References / Characteristics
Multiple continuous relation-seeking Multiple continuous relations References / Characteristics

TABLE IV
OUR PROTYPICAL TASK TAXONOMY FOR ANALYZING EHR/EMR DATASET

Elementary tasks Synoptic tasks

Direct lookup tasks
Which medical events occurred at time T for patient
cohort P?
What is the outcome for patient cohort P?

What kinds of medical event patterns (e.g. frequency
distribution of medical events, etc.) occurred in pa-
tient cohort P during time period T? What is the
average outcome for patient cohort P?

Inverse lookup tasks

When did medical event E occurred for Patient P?
For whom did the medical event E occurred at time
T?
Find those patient cohorts with positive/negative
outcome.

For which patient cohort to which the medical
event patterns (e.g. frequency distribution of medical
events, etc.) occurred during time period T conform
to the given pattern?
Find patient cohort with positive/negative average
outcome.

Direct comparison tasks
Compare the medical events (e.g. lab test results,
medication doses, etc.).
Compare the outcome of patient cohorts P1 and P2.

Compare the medical event patterns (e.g. the fre-
quency distribution of medical events, the average
dose, etc.) of patient cohorts P1 and P2.
Compare the average outcomes of patient cohorts P1
and P2.

Inverse comparison tasks

For patient P, compare the time when medical event
E1 occurred at the first time and the time when
medical event E2 occurred at the first time (e.g. the
time order, the time interval, etc.).

Compare the patient cohorts (e.g. the gender distri-
bution, the average age, etc.) with the medical event
pattern M1 and M2. Compare the specific cohorts
with positive and negative outcomes.

Binary relation seeking tasks

Find patient cohort with medical event E2 occurring
before or after medical event E1.
Find sub-cohorts with a better/worse outcome in a
cohort.
Which medical events lead to positive/negative out-
come?

Find those patient cohorts with similar medical
event patterns (e.g. frequency distribution of medical
events, etc.) to cohort P.
Find patient cohort with medical event E2 occurring
most/least often before/after medical event E1.
Find the patient cohort P1 with a better/worse aver-
age outcome than patient cohort P2.
Which medical events can lead to positive/negative
outcome?

Multiple continuous relation seeking tasks

For patient cohort P, which medical events (se-
quence) occurred before/after the medical event se-
quence E1 → E2 → E3?
Which medical event sequence lead to posi-
tive/negative outcome?

Find those patient cohort with medical event E4
occurring most/least often before/after medical event
sequence E1 → E2 → E3.
Which medical event sequences can easily lead to
positive/negative outcome?

VI. CONCLUSION

We have expanded and adapted the Andrienko-Andrienko

data-driven task analysis method data collection and coupled

it with a literature survey to derive an initial set of EHR/EMR

tasks. Future work includes searching for all these relation-

ships that cannot be described and creating patterns for a

complete EHR/EMR task taxonomy.
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